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The interband electronic Raman scattering (IERS) for Hg1-xCdxTe with the inverted band structure within the framework of the 
two-band Kane model is considered. The calculations of the differential effective cross section (DECS) are made. DECS for 
XX polarizations of incident and scattered radiation are calculated and its dependences on the frequency shift and “band-

gap” 𝜀𝑔 is obtained. A number of general features of the scattering process and the resulting Raman spectrum are examined. 

The non-resonant and resonant cases are considered. In both cases, the dependences of DECS on the frequency shift are 
plotted for various values of the band gap. 
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1. Introduction 

 

Solid solutions Hg1-xCdxTe have proven their 

advantages in practice, and there are now quite a lot of areas 

where they are used. Thermal imaging equipment based on 

the use of photodetectors in the infrared range for 

wavelengths of 1–30 μm is used in various areas. HgCdTe 

is the only common material that can detect infrared 

radiation in both of the accessible atmospheric windows. 

These are from 3 to 5 µm (the mid-wave infrared window, 

MWIR) and from 10 to 12 µm (the long-wave window, 

LWIR). HgCdTe can also detect in the shortwave infrared 

(SWIR) atmospheric windows of 2.2 to 2.4 µm and 1.5 to 

1.8 µm. It has many more competitors today than ever 

before. These include silicone Schottky diodes, SiGe 

heterojunctions, AlGaAs multi-quantum well structures, 

superlattices based on strained GalnSb layers, high-

temperature superconductors, and two types of thermal 

detectors: pyroelectric detectors and silicone bolometers. 

However, none of the above can compete with HgCdTe in 

fundamental properties. They may be more advanced, but 

will never provide better performance or, with the exception 

of thermal detectors, operate at higher or even comparable 

temperatures. The main advantages of HgCdTe are a direct 

band gap, the ability to obtain both low and high 

concentrations of charge carriers, high electron mobility 

and low dielectric constant. An extremely small change in 

the crystal lattice period with a change in composition 

makes it possible to grow high-quality multilayer structures 

and structures with a stepped bandgap [1-4].  

The band structure of Hg1-xCdxTe, depending on the 

composition (x), can be both normal, i.e. semiconductor 

(x>0.15; InSb type), and inverse, i.e. semi-metallic (x< 

0.16; type of ɑ–Sn, HgTe).  

The energy distance between the bottom of the 

conduction band and the top of the valence band can vary 

from (-0.3) eV (x=0, HgTe) to +1.6 eV (x=1, CdTe). With 

an increase in the width εg starting from (-0.3 eV) at 𝜀𝑔 =

0, the band structure changes from inverse to normal band 

structure, i.e., Hg1-xCdxTe covers a fairly wide range of the 

spectrum, which includes the entire infrared region, as well 

as a part of the near-ultraviolet region [1,2]. 

Electronic Raman scattering is one of the powerful 

method for studying the electronic structure of 

semiconductors [5-8] and nanostructures based on them [9-

12]. In this paper we consider the possible interband 

electronic Raman scattering (IERS) for Hg1-xCdxTe with the 

inverted band structure within the framework of the two-

band Kane model. 

 

 
2.  General formula 
 

The formula for differential effective cross section 

(DECS) of electron Raman scattering (ERS) is given in 

many works [5-8]. Here we will use the formula given by 

Y. Yafet [7]. 

 

 
𝑑2𝑆

𝑑𝛺𝑑𝜔
= 𝑟0

2 𝜔1

𝜔0
∑ |𝐴𝑓𝑖|𝑖,𝑓

2
ℏ𝛿(ℏ𝜔 − 𝐸𝑓 + 𝐸𝑖)    (1) 

 

here 𝛺 is solid angle, 𝜔0  and 𝜔1 are the incident and 

scattered light, correspondingly, 𝜔 = 𝜔0 −𝜔1 is the 

frequency shift, 𝑟0 = 𝑒
2/𝑚0𝑐

2 is the classical radius of the 

electron, and 

 𝐴𝑓𝑖 =
1

𝑚0
∑ [

(𝑒1
∗
�⃗�)
𝑓𝑟
(𝑒0�⃗�)𝑟𝑖

𝜀𝑖+ℏ𝜔0−𝜀𝑟
+
(𝑒0�⃗�)𝑓𝑟(𝑒1

∗
�⃗�)
𝑟𝑖

𝜀𝑖−ℏ𝜔1−𝜀𝑟
]𝑟     (2)    

 

is a dimensionless composite matrix element, where 𝑖, 𝑓, 𝑟  

indicate the initial, final and intermediate state, 

correspondingly, 𝜀𝑖 , 𝜀𝑓 , 𝜀𝑟 are the corresponding energies 

and 𝑒0, 𝑒1 are the polarizations of the incident and scattered 

radiation, respectively. 

https://www.chemeurope.com/en/encyclopedia/Infrared_detector.html
https://www.chemeurope.com/en/encyclopedia/Infrared_detector.html
https://www.chemeurope.com/en/encyclopedia/Atmospheric_windows.html
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In (1), the summation covers all filled initial and empty 

final states. In this paper we consider the interband 

electronic Raman scattering (IERS) for Hg1-xCdxTe with the 

inverted band structure within the framework of the two-

band Kane model[13].  

The determination of the Raman cross section is 

reduced, according to (2) to the calculation of the composite 

matrix element 𝐴𝑓𝑖, which, as is obvious, requires 

knowledge of the spectrum and wave functions of one-

electron states.  

 

 
3. Spectrum and wave functions 
 

Fig. 1 shows the inverted band structure near the center 

of the Brillouin zone �⃗⃗� = 0 in two-band Kane model and 

the possible interband electronic Raman scattering[10]. 

  

 
 
Fig. 1. Inverted band structure of Hg1-xCdxTe (x< 0.15) near the 

center of the Brillouin zone �⃗⃗� = 0 in in two-band Kane model 

and the possible interband electronic Raman scattering  

(color online) 

 

From the solution of the Schrödinger equation for the 

two-band Kane model (Fig. 1) we obtain the wave functions 

and electron spectrum of the corresponding bands: 

 

𝜓1𝑘↑(𝑟) = [
𝜀1(�⃗⃗�) + 𝜀𝑔

2𝜀1(�⃗⃗�) + 𝜀𝑔
]

1

2

× 

×

{
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√
2
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𝑃𝑘
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−
1

2

𝑘−
𝑘
𝑢5

}
 

 

𝑒𝑖�⃗⃗�∙𝑟 

𝜓2𝑘↑(𝑟) = {−
𝑘𝑧
𝑘

𝑘+
2

𝑘⊥
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3
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𝑘+
𝑘
𝑢4

+ −
1
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𝑘−
𝑘
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𝜓3𝑘↑(𝑟) = [
𝜀3(�⃗⃗�) + 𝜀𝑔

2𝜀1(�⃗⃗�) + 𝜀𝑔
]

1

2

× 

× {
𝜀3(�⃗⃗�)𝑢1

√
2

3
𝑃𝑘

+√
3

2

𝑘+

𝑘
𝑢3 +

𝑘𝑧

𝑘
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1

2
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𝑘
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(3) 

𝜓𝑛𝑘↓(𝑟) = �̂�𝜓𝑛𝑘↑(𝑟)  �̂� = �̂�𝐼         (3) 

 

Here  �̂�  is the time-reversal  operator and  �̂�  is  the 

space-inversion  operator, u1  to  u6  are the Bloch 

amplitudes, 

 

k±  =  kx ±iky ,  𝑘┴
2 = 𝑘𝑥

2 + 𝑘𝑦
2 

 

𝑢1 = 𝑖𝑆 ↓⟩ ;        𝑢2 = 𝑖𝑆 ↑⟩, 

𝑢3 =
1

√2
|(𝑋 − 𝑖𝑌) ↓⟩;       𝑢4 = √

2

3
|𝑍 ↓

⟩ +
1

√6
|(𝑋 − 𝑖𝑌) ↑⟩, 

    𝑢5 = √
2

3
𝑍 ↑⟩ −

1

√6
|(𝑋 + 𝑖𝑌) ↓⟩;             (4) 

𝜀1(�⃗⃗�)(𝜀3(�⃗⃗�) + 𝜀𝑔) =
2

3
𝑃2𝑘2 

𝑃 = −
ℏ

𝑚0
⟨𝑆|∇𝑧|𝑍⟩     𝜀2(�⃗⃗�) = −

ℏ2𝑘2

2𝑚ℎ
 

𝜀3(�⃗⃗�) = −𝜀1(�⃗⃗�) − 𝜀𝑔 
  

 
4. Calculation of the differential effective  
    cross section 
 

Since direct optical transitions of the type (l)-(c), (h)-

(l) are allowed by the symmetry of the crystal, the IERS 

process takes place, which is shown in Fig. 2. 
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 An incident photon with a frequency 𝜔0 excites an 

electron from the zone of light holes (l) to the conduction 

bands (c). In the second act, an electron from the zone of 

heavy holes “rolls” into the formed hole in the zone (l) and 

emits a photon with a frequency𝜔1. The frequency shift 

𝜔 = 𝜔0 − 𝜔1 is equal to the excitation energy of the 

electron-hole pair formed in the scattering process. At T=0 

zone (l) and (h) are completely filled, and the area (c) is 

empty. The states of electrons in the zones c, h, l will be 

denoted, respectively |𝑐�⃗⃗�𝜎
1
>, |ℎ�⃗⃗�𝜎

2
>, |𝑙�⃗⃗�𝜎

3
>.  

In formula (1), we pass from the sum over �⃗⃗�  to 

integration.  

 

𝑑2𝑠

𝑑𝛺𝑑𝜔
= 𝑟0

2
ℏ

(2𝜋)3
𝜔1
𝜔0

∑∫
𝑘2𝑑𝑘

𝑑𝜀1
|𝐴𝑐ℎ|

𝜎1𝜎2

2

× 

× 𝛿(ℏ𝜔 + 𝜀2 + 𝜀1)𝑑𝜀1𝑑𝛺(�⃗⃗�).                     (5) 

 

Let us express 𝜀2  by 𝜀1.Then we obtain  

 

𝜀2 = −
3ℏ2

4𝑚ℎ𝑃
2 (𝜀1 + 𝜀𝑔)𝜀1 = −

𝜀1(𝜀1+𝜀𝑔)

𝜀0
, 

𝜀0 =
4𝑚ℎ𝑃

2

3ℏ2
                                  (6) 

 

Here we introduce the parameter 𝜀0, the characteristic 

energy, which is practically a constant value for the 

materials we are considering. At 𝑚ℎ = 0.4𝑚0, 𝑃 = 8 ⋅
10−8eV∙cm; 𝜀0 ≈ 4.48 eV. Then we find that, 

 

𝜌(𝜀1) =
𝑘2𝑑𝑘

𝑑𝜀1
=

3√3

4√2𝑃3
(2𝜀1 + 𝜀𝑔)𝜀1

1/2(𝜀1

+ 𝜀𝑔)
1/2 

                     (7)            

 

Integration in (5) is simply removed using the δ-

function and 

 
𝑑2𝑆

𝑑𝛺𝑑𝜔
=

𝑟0
2 ℏ

(2𝜋)3
𝜔1

𝜔0
𝜌(𝜆)∑ ∫|𝐴𝑐ℎ|𝜎1𝜎2

2 1

|𝜑′(𝜆)|
𝑑𝛺(�⃗⃗�) ,  (8) 

 

where λ- is the solution of the equation 𝜑(𝜀1) = 0, under δ-

function 

 

           𝜆 =
(𝜀0+𝜀𝑔)

2
[√1 +

4ℏ𝜔𝜀0

(𝜀0+𝜀𝑔)
2 − 1]              (9) 

 

Since this is    

 

|𝜑′(𝜆)| = 1 +
𝜀𝑔

𝜀0
(1 +

4ℏ𝜔𝜀0

(𝜀0 + 𝜀𝑔)
2)

1\2

≈ 1 

 

we can write;        

                 

 
𝑑2𝑆

𝑑𝛺𝑑𝜔
= 𝑟0

2 ℏ𝜔1

(2𝜋)3𝜔0
𝜌(𝜆)∑ ∫|𝐴𝑐ℎ(𝜆)|𝜎1𝜎2

2
𝑑𝛺(�⃗⃗�)     

(10)                                

Here; 

 

𝐴𝑐ℎ(𝜆) =
1

𝑚0𝐴(𝜆)
⋅

∑ ⟨𝑐�⃗⃗�𝜎1|𝑃𝐼|𝑙�⃗⃗�𝜎3⟩𝜎3 ⟨𝑙�⃗⃗�𝜎3|𝑃𝑠|ℎ�⃗⃗�𝜎2⟩ +
1

𝑚0𝐵(𝜆)
⋅

∑ ⟨𝑐�⃗⃗�𝜎1|𝑃𝑆|𝑙�⃗⃗�𝜎3⟩𝜎3 ⟨𝑙�⃗⃗�𝜎3|𝑃𝐼|ℎ⃗⃗𝑘𝜎2⟩, 
(11)        

 

𝐴(𝜆) = 2𝜆 + 𝜀𝑔 − ℏ𝜔0,  𝐵(𝜆) = 𝜆 + 𝜀𝑔 + ℏ𝜔0     

(12)  

                                                                               

𝑃𝐼  and 𝑃𝑠 are the projections of the momentum operator 

on the polarization directions of the incident and scattered 

photons, respectively. 

 

 
5. ХX Scattering 
 

Let us consider the case when the incident and scattered 

light are polarized along the X axis. Then formula (10) takes 

the form 

 

𝑑2𝑆𝑥𝑥
𝑑𝛺𝑑𝜔

=
𝑟0
2ℏ𝜔1

(2𝜋)3𝜔0
𝜌(𝜆) [

1

𝐴(𝜆)

+
1

𝐵(𝜆)
]
2

∫𝑑𝛺(�⃗⃗�) ∑ |
1

𝑚0
𝜎1𝜎2

× ⟨𝑐�⃗⃗�𝜎1|𝑝𝑥|𝑙�⃗⃗�𝜎3⟩⟨𝑙�⃗⃗�𝜎3|𝑝𝑥|ℎ�⃗⃗�𝜎2⟩
2| 

 

(13) 

 

Using the explicit form of the wave functions (3), we 

find that 

 

∫𝑑𝛺(�⃗⃗�)∑ |
1

𝑚0
∑ ⟨𝑐�⃗⃗�𝜎1|𝑝𝑥|𝑙�⃗⃗�𝜎3⟩⟨𝑙�⃗⃗�𝜎3|𝑝𝑥|ℎ�⃗⃗�𝜎2⟩

2
𝜎3 |𝜎1𝜎2 =

=
16𝜋𝑃4

45ℏ4
⋅
𝜆+𝜀𝑔

2𝜆+𝜀𝑔
(1 +

𝜀𝑔
2

(2𝜆+𝜀𝑔)
2)        (14)             

 

Substituting (14) into (13) we finally obtain 

 
𝑑2𝑆𝑥𝑥

𝑑𝛺𝑑𝜔
= 𝑟0

2 ∙
𝑚0
2𝑃

10√6𝜋2ℏ3
𝜔0−𝜔

𝜔0
⋅ Ф(𝜆)              (15) 

where 

 

Ф(𝜆) = 𝜆
1

2(𝜆 + 𝜀𝑔)
3

2 ∙ [
1

𝐴(𝜆)
+

1

𝐵(𝜆)
]
2
(1 +

𝜀𝑔
2

(2𝜆+𝜀𝑔)
2)  

(16)      

 

is a dimensionless function.                 
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It can be seen from formulas (15) and (16) that for 𝜀𝑔 →

∞ (parabolic limit) we obtain the corresponding formulas of 

the work [14].  

 
 
6. The discussion of the results 
 
It is seen from the expression (15) for XX scattering 

that the DECS spectrum extends from  𝜔 = 0 to 𝜔 = 𝜔0. 

Let ℏ𝜔0 < 𝜀𝑔. In this case, at low frequencies 𝜔 << 𝜔0 

DES continues to grow, then reaching the maximum, 

decreases to zero. 

But if ℏ𝜔0 > 𝜀𝑔 , resonance occurs, when 𝐴(𝜆) = 0 , 

that is; 

 

                        ℏ𝜔 =
ℏ𝜔0−𝜀𝑔

2
(1 +

ℏ𝜔0+𝜀𝑔

2𝜀0
)               (17)               

                                                                                

This resonance corresponds to real transitions between 

zones (l) and (c) caused by incident radiation and real 

transition between (l)-(c), (h) and (l) caused by scattered 

radiation. Knowing the values of 𝜔0, 𝑃 and 𝑚ℎ from the 

position of the resonance peak, one can find the 

experimental value of 𝜀𝑔. 

It follows from expression (17) that taking into account 

the non-parabolicity leads to a shift of the resonant point to 

the right, by the value; 

 

𝛥ℏ𝜔 =
ℏ𝜔0−𝜀𝑔

2
⋅
ℏ𝜔0+𝜀𝑔

2𝜀0
                      (18) 

 

Fig. 2 shows the dependence of the DECS on the 

frequency shift for two values of  𝜀 𝑔 (𝜀𝑔 = 0.3𝑒𝑉 and 

0.2eV). For  ℏ𝜔0 is taken the value 0.117 eV (СО2 laser 

line) and Р = 8 ∙10-8 eV∙cm. As can be seen from the figure 

3, with a decrease of  𝜀𝑔, the DECS maximum increases and 

when ℏ𝜔0 < 𝜀𝑔 scattering is non-resonant. But when 

ℏ𝜔0 > 𝜀𝑔 the scattering becomes resonant.  It follows from 

Fig. 3 that with decreasing 𝜀𝑔 the resonant frequency shifts 

towards higher energies (to the short-wavelength region of 

the spectrum).  In this case, the DECS of IERS are of great 

values, which indicates the possibility of obtaining a laser 

effect based on the IERS.  

 

 

 

 

 
 

Fig. 2. Plot of DECS as a function of frequency shift of non-resonant ( g 0 ) IERS for two values of g   

(color online) 
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Fig. 3.  LogPlot of DECS as a function of frequency shift of resonant ( g 0 ) IERS  for  five values of g  (color online) 

 

A qualitatively different situation occurs in the gapless 

state 𝜀𝑔 = 0. In this case, formula (15) takes the form 

 

𝑑2𝑆𝑥𝑥

𝑑𝛺𝑑𝜔
= 𝑟0

2 𝑚0
2𝑃

10√6𝜋2ℏ3
𝜔0−𝜔

𝜔0
𝜆2 ⋅ |

1

2𝜆−ℏ𝜔0
+

1

𝜆+ℏ𝜔0
|
2
    

(19) 

 

where                                                        

        

                   𝜆 =
𝜀0

2
⋅ [√1 +

4ℏ𝜔

𝜀0
− 1]             (20)

                                                                      

One can immediately note that in this case only 

resonant scattering takes place. At low frequencies, 

expanding expression (20) in a power series 
ℏ𝜔

𝜀0
 and 

restricting ourselves to the first two terms, we get that λ ≈ 

ћω. Then 

  

𝑑2𝑆𝑥𝑥

𝑑𝛺𝑑𝜔
= 𝑟0

2 9𝑚0
2𝑃

40√6𝜋2ℏ3
(
𝜔

𝜔0
)
2
⋅ |

1
2𝜔

𝜔0
−1
+

1
𝜔

𝜔0
+1
|

2

  (21) 

                                

that is, in the gapless state at low frequencies, the cross 

section depends quadratically on 𝜔. As 𝜔 increases, the 

cross section decreases, so does 

 

𝜔 =
𝜔0

2
⋅ (1 +

ℏ𝜔

2𝜀0
) ≈

𝜔0

2
              (22) 

 

resonance occurs. With further growth due to the factor  
𝜔0−𝜔

𝜔0
 DECS tends to zero. Note that, according to the 

position of the resonant frequency as a function of 𝜀𝑔, one 

can observe the semimetal-semiconductor transition in the 

experiment. As can be seen from expression (18), with a 

decrease of 𝜀𝑔, the resonant point shifts to the right, and at 

𝜀𝑔 = 0, the transition point of semimetal-semiconductor 

has the value (22). 

It also follows from the above that it is possible to build 

a laser, in the absence of a magnetic field, operating in a 

resonant mode, the frequency of which can be controlled by 

smoothly changing the bandgap   𝜀𝑔. 

So far, our discussions have referred to intrinsic 

materials at temperature T=0K. If there will be impurities, 

then the presence of electrons in the conduction band leads 

to the fact that the final states up to the Fermi level will be 

blocked and will not participate in the IERS process. In 

other words, the presence of free electrons shifts the IERS 

threshold to the right (the Moss-Burstein effect). This 

threshold is determined by the expression 

 

             𝜆𝑡ℎ𝑟𝑒𝑠 = 𝜀𝐹 = −
𝜀𝑔

2
+√

𝜀𝑔
2

4
+
2

3
𝑃2𝑘𝐹

2,    (23) 

𝑘𝐹 = (3𝜋
2𝑛)2/3; 

 

where n is a conduction-electron concentration.  

One of the fundamental problems in the observation of 

interband Raman scattering is its difference from ordinary 

luminescence. Since electron-hole pairs are formed in the 

Raman process, recombination of electrons and holes can 

occur with simultaneous emission of light. Electrons and 

holes have certain lifetimes during which they can partially 

or completely thermalize before recombination occurs. 

Therefore, a broad luminescent band can be expected. 

Raman scattering from luminescence in the experiment can 

be distinguished using resonant peaks (peak positions), 

observing their shifts depending on the frequency of the 

incident light and the width of the band gap    𝜀𝑔. 

The calculations above were carried out in the single-

particle approximation, i.e. we did not take into account 

exciton effects. Accounting for exciton effects can lead to a 

significant modification of the scattering spectrum. Clearly 

pronounced peaks associated with exciton transitions can be 

observed in the experiment. It should be noted that taking 

into account the Coulomb interaction between an electron 
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and a hole produced in the process of scattering can also 

turn out to be important. 
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